
Gelmi A, Garzetti M and Asenova M • Creativity in mathematical learning: 

A model to explain the cognitive functioning of creative processes and provide 

general design requirements 

 

 

Creativity in mathematical learning: A model to explain the 
cognitive functioning of creative processes and provide 

general design requirements 

Creatività nell’apprendimento della matematica: Un 
modello per spiegare il funzionamento cognitivo dei 
processi creativi e fornire requisiti generali di task design 

Creatividad en el aprendizaje de las matemáticas: Un 
modelo para explicar el funcionamiento cognitivo de los 
procesos creativos y proporcionar requisitos generales de 
diseño de tareas 

Alessandro Gelmi,1 Marzia Garzetti2 e Miglena Asenova1;3 
1Faculty of Education, Free University of Bozen-Bolzano, Italy 

2University of Genoa, Italy 
3NRD, University of Bologna, Italy 

 

Abstract. The interest in creativity in mathematics education has increased in the last 

few years at all levels. Nevertheless, a comprehensive framework for creativity in 

mathematics education that supports the design of appropriate tasks is still missing. In 

this paper ta connection between different elements coming from mathematics education 

and psychology is built to provide a theoretical model for the explanation of the cognitive 

functioning of creative processes. For this purpose, the creativity characteristics of 

originality and flexibility are used to categorize creative processes, then the defined 

categories are cognitively characterized by elements of conceptual blending theory. 

Finally, general requirements of task design to support creativity in mathematics 

education are developed, consistently with the introduced model. The model can be used 

for ‘navigating’ the existing literature and identifying redundancies and synergies 

between different theoretical approaches; it can also be intended as a tool for detecting 

and classifying instances of creativity. Moreover, the introduced design requirements 

allow to work in the direction of task design to stimulate and foster creativity in 

mathematics education. 

Keywords: mathematics education; creativity; task design; cognitive model; design 

requirements 
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Sunto. Negli ultimi anni, l’interesse per la creatività in didattica della matematica è 

aumentato a tutti i livelli. Tuttavia, manca ancora un framework completo per la 

creatività in didattica della matematica che supporti la progettazione di task 

appropriati. In questo articolo viene stabilita una connessione tra diversi elementi 

provenienti dalla didattica della matematica e dalla psicologia, al fine di fornire un 

modello teorico in grado di spiegare il funzionamento cognitivo dei processi creativi. A 

tal fine, due caratteristiche della creatività, che sono l’originalità e la flessibilità, 

vengono utilizzate per categorizzare i processi creativi; le categorie definite vengono 

caratterizzate cognitivamente mediante elementi della teoria di conceptual blending. 

Infine, vengono sviluppati dei requisiti generali per la progettazione delle attività con 

l’obiettivo di sostenere la creatività in didattica della matematica in coerenza con il 

modello introdotto. Tale modello può essere utilizzato per ‘navigare’ la letteratura 

esistente e identificare ridondanze e sinergie tra diversi approcci teorici; esso può essere 

anche inteso come strumento utile per individuare e classificare istanze di creatività. 

Inoltre, i requisiti di progettazione introdotti consentono di lavorare nella direzione 

della progettazione di task utili per stimolare e favorire la creatività in didattica della 

matematica. 

 
Parole chiave: educazione matematica; creatività; progettazione didattica; modello 

cognitivo; requisiti di task design  

 
Resumen. En los últimos años, el interés por la creatividad en la enseñanza de las 

matemáticas ha aumentado a todos los niveles. Sin embargo, sigue faltando un marco 

global para la creatividad en la educación matemática que respalde un diseño adecuado 

de las tareas. En este artículo se establece una conexión entre distintos elementos de la 

educación matemática y la psicología con el fin de proporcionar un modelo teórico que 

pueda explicar el funcionamiento cognitivo de los procesos creativos. Con este fin, se 

utilizan dos características de la creatividad, que son la originalidad y la flexibilidad, 

para categorizar los procesos creativos; las categorías definidas se caracterizan 

cognitivamente utilizando elementos de la teoría de la conceptual blending. Por último, 

se desarrollan requisitos generales para el diseño de actividades con el objetivo de 

apoyar la creatividad en la educación matemática de forma coherente con el modelo 

introducido. Este modelo puede utilizarse para ‘navegar’ en la literatura existente e 

identificar redundancias y sinergias entre diferentes enfoques teóricos; también puede 

entenderse como una herramienta útil para identificar y clasificar instancias de 

creatividad. Además, los requisitos de diseño introducidos permiten trabajar en la 

dirección de diseñar tareas útiles para estimular y fomentar la creatividad en la 

educación matemática. 

 
Palabras clave: educación matemática; creatividad; diseño didáctico; modelo cognitivo; 

requisitos de diseño de tareas 
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1. Introduction 

There are at least two arguments in favor of the importance of creativity in 

mathematics education. Firstly, creativity is recognized as an important twenty-

first century skill (Pellegrino & Hilton, 2012) necessary to face the exponential 

growth of innovation in all areas of life associated with technological progress 

and scientific advancement (Leikin & Sriraman, 2021). Secondly, creativity is a 

necessary condition for insightful and lasting learning, as it is an essential 

ingredient in problem solving processes (Haavold & Sriraman, 2022; Leikin & 

Elgrably, 2022; Schoevers et al., 2022), but also in argumentation processes, 

intended as a sequence of original and plausible arguments that are based on 

mathematical properties (Haavold et al., 2020; Lithner, 2008). Indeed, each 

authentic problem-solving activity, focused on a problematic situation never 

faced before, requires a certain kind of creative thinking.  

Summing up, creativity in mathematics education is crucial not only for its 

practical value in preparing students for future scientific challenges but also as 

an integral part of the discipline itself, as its primary importance lies in fostering 

deep and lasting learning, essential for navigating future technological 

advancements. Therefore, creativity’s role in mathematics should be valued for 

its own merit, beyond its specific practical applications. But how can creativity 

be stimulated in the context of the ‘every day’-classroom-practice, which kind of 

tasks could be used and why are they appropriate in this sense? 

While till now in mathematics education research an important effort was 

made to design suitable tasks for particular experimental settings, with the aim to 

produce diagnostic tools able to capture creativity instances (e.g., Leikin, 2013; 

Schindler & Lilienthal, 2022; Singer & Voica, 2022), general design 

requirements1 for tasks that would allow to stimulate creativity are still 

underinvestigated. Such design requirements would greatly benefit research in 

mathematics education by enhancing our understanding of how to stimulate and 

develop creativity. They would also serve as valuable tools in teacher training, 

assisting educators in systematically designing suitable tasks. However, these 

task design requirements must be theoretically well founded on cognitive 

principles. This grounding is essential to explain how and why these 

requirements are crucial for designing tasks able to foster and potentially develop 

instances of creativity. Indeed, without a link of the design requirements to the 

cognitive tools, creativity stimulating tasks appear as a sort of ‘black boxes’ that 

transform non-creative students into creative ones. This paper presents a model 

 
1 We prefer to use the term ‘design requirements’ rather than ‘design principles’ because we are 

focusing on deducing such requirements theoretically, rather than inductively by abstracting from 

successful examples (Bell et al., 2004; McKenney & Reeves, 2018). 
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designed to generate these general design requirements. It integrates theoretical 

concepts from both mathematics education and psychology, with the goal of 

identifying design requirements tailored specifically to mathematics education. 

 

 

2. State of the art, research problem and research questions 

In this section, we first focus on the literature regarding the criteria for task design 

that promote creative thinking in mathematics education and then characterize 

the research problem and formulate the research questions. 

 

2.1.State of the art 

In their recent survey on creativity in mathematics, Leikin and Sriraman (2022) 

scrutinize 25 papers categorized under the title “Creativity related to practices 

and mathematical tasks.” While all the papers of this category discuss tasks that 

may stimulate creativity, only a handful offer some arguments advancing the 

discussion on task design requirements. In the following we shortly discuss the 

five papers that are closely related to this topic, pointing out their relation to our 

focus on general task design requirements. 

• Levav-Waynberg and Leikin (2012) produce a longitudinal study that 

compares knowledge and creativity development between experimental and 

control groups using student-written tests. The research focuses on certain 

creativity criteria, like fluency and flexibility, suggesting that they are more 

amenable to enhancement and thus more ‘teachable’ than other criteria, such 

as originality. This study sheds light on how task design might bolster 

creativity, but it also helps to clarify which aspects of creativity can be 

developed ‘on a large scale’ and which may need more targeted strategies to 

reach more students. However, the paper’s emphasis is on the application of 

specific tasks rather than on establishing broad criteria for task design. 

• Lee (2017) provides a diagnostic model for the graduation of teachers’ ability 

to construct tasks suitable for creativity education. This approach is helpful 

to better understand how teacher can act on higher or lower levels in 

designing tasks to foster creativity, but it does not provide general 

requirements for task-design.  

• Boesen et al. (2010) examine how different tasks affect students’ 

mathematical reasoning during national tests. They find that fostering 

creativity requires challenging tasks that diverge from routine classroom 

activities and push students beyond their comfort zones. However, the study’s 

purpose is primarily diagnostic and does not focus on establishing universal 

task design requirements. 
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• Aljarrah (2020) explores collective creativity in mathematical learning, 

identifying four key creative acts within groups: summing forces, expanding 

possibilities, divergent thinking, and assembling things in new ways. While 

the study highlights cognitive tools that support creativity, it does not connect 

them to task design criteria, which would be relevant for research on general 

task design requirements. 

• Sriraman and Dickman (2017) propose a reflection on tasks that require 

insight into mathematical pathologies, that means examples of 

counterintuitive behavior, showing how they can support creativity in the 

classroom. This paper focuses on the characteristics that make mathematical 

problems suitable for creativity education, but it does not focus on the criteria 

to be used to support task design in general and does not explain how they 

are related to the emergence of creativity.  

 

2.2. Research problem and research questions 

While most of the contributions discussed in section 2.1. offer structured tasks to 

enhance creative thinking, possibly including some general design requirements, 

none of them entirely elucidate the assumption about the efficacy of such tasks 

in nurturing creativity in mathematics education. This is not at all surprising since 

the rationale of the articles is not focused on such general aspects, but if we look 

at the related literature from this perspective, there is a lack of a cohesive and 

thorough framework able to support understanding of creative processes and their 

cognitive underpinnings. Indeed, each of the presented papers introduces a set of 

tools or operational criteria specific to the problem faced in the research, but none 

provides a theoretical synthesis of such tools or operational criteria. This paper 

aims to reduce the heterogeneity and fragmentation of the scenario, marked by a 

variety of design solutions, partly alternative and partly redundant or 

overlapping, by providing an overarching framework. For this purpose, we 

explore the link between cognitive mechanisms and task design, supposing to 

significantly clarify in this way the characteristics of the methods and the means 

to enhance creativity in mathematics learning. To achieve this, we first aim to 

establish a theoretical basis for the emergence of creative features and then 

elucidate their cognitive functioning. The cognitive tools that support this 

cognitive functioning and foster creative thinking are supposed to bridge the gap 

between student’s creativity, as reported in the literature, and the requirements of 

task design intended to stimulate it. 

The research question that emerges from the research problem characterized 

above is thus the following: 

Which are general requirements of task design for tasks able to stimulate and 
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foster creativity in learning mathematics? 

Starting from what was previously mentioned about the limitations of current 

research on task design, this research question is divided into two sub-questions: 

a) Which are the characteristics of a theoretical model able to provide a 

synthetic and comprehensive explanation of the cognitive functioning of 

creative processes? 

b) Which task-design requirements can be deduced from this model in order 

to stimulate and foster creativity in mathematical learning? 

 

 

3. Theoretical Framework 

In this section, we present the theoretical frameworks we have drawn upon to 

answer the first research sub-question. In Section 3.1., we provide a preliminary 

clarification on the specific conception of creativity we focus on in this paper. In 

Section 3.2., we introduce the theory of conceptual blending, drawn from 

psychology, which serves as the primary theoretical reference to anchor the 

construction of our model for the explanation of the cognitive functioning of 

creative processes. 

 

3.1. A suitable characterization of creativity 

In mathematics education research, there is no universally agreed definition of 

creativity. Rather, there are common theoretical references where dimensions, 

types and characteristics of creativity are distinguished, and from which each 

study develops its own specific definition. In this section we clarify which 

dimensions, types and characteristics of creativity are relevant to our research 

purposes, and we present the concept of creativity we have chosen to work with.  

1) Dimensions. With regard to the different dimensions of creativity, we 

consider Rhodes’ (1961) work on the 4 P’s of creativity, widely shared in 

mathematics education (e.g., Pitta-Pantazzi et al., 2018): creativity seen as a 

feature of either a person (understanding the traits, characteristics or 

attributes of the creative person), a process (describing the operations or 

stages of thinking used in the creative process), a press (examining the nature 

of situations and its context within the creative press), or a product 

(identifying outcomes and qualities of creative products). As clarified in 

section 2, in this paper we aim to provide an explanation of the cognitive 

functioning of creative processes. Accordingly, we focus our attention on the 

process, that is on creativity as a way of thinking, and do not consider 
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explicitly the other three dimensions2. 

2) Types. Regarding the types of creativity, we refer to the 4c model (Kaufman 

& Beghetto, 2009). These authors identified four types of creativity: (a) Big-

Creativity (Big-C) exhibited by individuals who have won prestigious prizes 

and have gained long-term recognition; (b) Pro-creativity (Pro-c) or expert 

creativity; (c) Little-creativity (little-c) or ordinary creativity, manifested in 

everyday activities and discernible to others; and (d) Mini-creativity (mini-

c), which is defined as the “novel and personally meaningful interpretation of 

experiences, actions and events” and is “involved in the construction of 

personal knowledge and understanding” (Beghetto & Kaufman, 2007, p. 73). 

In this paper, we aim to clarify the distinctive features of creative thinking 

processes that underpin personal learning in mathematics. Therefore, we 

focus exclusively on the ‘mini-c’ type of creativity. 

3) Characteristics of creativity. Concerning the characteristics of creativity, we 

consider the psychometric models that have informed research on creativity 

in mathematics education (Joklitschke, et al., 2022). More specifically, we 

focus on two of the three criteria identified by Guilford (1959): flexibility (the 

number of different categories of solutions to the same problem) and 

originality3 (the unusualness of solutions), while we do not consider fluency 

(the number of solutions) because this feature relates to the assessment of 

creative performance, which is beyond the scope of this article. Originally, 

the concepts of flexibility and originality were introduced to study divergent 

thinking and to define variables useful for the experimental measurement of 

a person’s creative abilities. Rather than viewing them as indicators for the 

empirical observation of divergent thinking performances, we regard these 

characteristics of creativity as conceptual categories to describe creative 

processes in a broad sense.  

Holding together the premises on dimensions, types, and characteristics of 

 
2 By this we do not mean that creativity can be reduced to cognitive aspects alone and/or that the 

process is separable from the other dimensions or is more important than them. Ours is merely a 

choice of analysis that follows from the research questions we are working on. Indeed, as Rhodes 

himself points out: “each strand has unique identity academically, but only in unity do the four 

strands operate functionally” (Rhodes, 1961, p. 307).  
3 Torrance’s work (1974), which is also relevant in mathematics education, distinguishes similar 

characteristics of creativity, replacing the term ‘novelty’ with ‘originality’. We consider these 

two terms interchangeable. However, as mentioned above, in this work we focus on the process 

dimension. Therefore, like flexibility, the characteristic of originality/novelty must also be 

understood in relation to this dimension. Thus, we do not speak of originality in absolute terms, 

but only in relation to thought processes that are unprecedented for the subject performing them.  
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creativity, in this study we focus on originality and flexibility as distinctive 

properties of the mini-c processes that inform mathematical learning. 

Our goal is to explain the cognitive functioning of creative thinking processes 

that enable students to use prior knowledge in new ways and generate novel 

solutions, ideas, and strategies. 

Creativity, as defined in our research, has been deeply discussed in 

mathematics education. Pitta-Pantazzi and colleagues (2022) highlight three 

essential forms of ‘mini-c’ creativity: (a) building intuition and abstractness of a 

mathematical concept; (b) creating, manipulating, and connecting 

representations; (c) expressing flexible thinking. We take these instances as a 

point of reference, in accordance with the concluding remark of the quoted study, 

not because they “present an exhaustive list,” but because they “have the potential 

to capture mini-c related to various mathematical concepts (arithmetic, algebraic, 

geometric, statistical and measurement)” (Pitta-Pantazzi et al., 2022, p. 65). 

Indeed, the mini-c classification provides criteria that shed light on the cognitive 

requirements necessary for creativity tasks in mathematics education. In section 

4, we will revisit these three ‘mini-c’-instances, introducing them a in our model 

that connects them to the overarching characteristics of ‘mini-c’ processes and 

presents a systematic classification of creative processes grounded in their 

cognitive functioning. 

 

3.2. Conceptual blending 

In section 2 we highlighted a gap in mathematics education research: the lack of 

a detailed cognitive explanation for how instructional methods and tasks promote 

creativity. Existing requirements for task design propose ways to encourage 

original and flexible thinking, yet they do not adequately explain the cognitive 

functioning of creative processes. Consequently, these requirements provide 

assorted solutions but lack an overarching structure.  

To tackle the issue of providing such an overarching structure, we turn to 

Fauconnier and Turner’s theory on conceptual blending (Fauconnier & Turner, 

2002; 2003). According to these authors: 

Conceptual blending is a basic mental operation that leads to new meaning, global 

insight, and conceptual compressions useful for memory and manipulation of 

otherwise diffuse ranges of meaning. It plays a fundamental role in the construction 

of meaning in everyday life, in the arts and sciences, and especially in the social and 

behavioral sciences. The essence of the operation is to construct a partial match 

between two input mental spaces, to project selectively from those inputs into a 

novel ‘blended’ mental space, which then dynamically develops emergent structure. 

(Facounnier & Turner, 2002, p. 2) 
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As we will explain in the following, creative thinking is one of the human 

processes that the theory of conceptual blending can help to clarify and 

characterize from a cognitive point of view. But let us first deepen some concepts 

involved in the definition of conceptual blending. A key concept referenced in 

the definition that requires further explanation is the one of  'mental space,' which 

is crucial in this context: 

Mental spaces are small conceptual packets constructed as we think and talk, for 

purposes of local understanding and action - they are very partial assemblies 

containing elements, structured by frames and cognitive models. (Facounnier & 

Turner, 2002, p. 2) 

The idea of mental space is general in scope and in the context of this paper is to 

be understood as a cognitive framework in which different elements are related 

within ordered structures to organize knowledge and to gain explanatory and 

predictive control over experience. A precise set of rules, more or less explicit, 

informs each of these mental spaces, establishing which elements, which 

relations and which structural configurations are allowed within them. Examples 

of mental spaces which are also relevant to the exercise of creativity in learning 

mathematics are the scripts (Abelson, 1981). Scripts can be intended as 

anticipatory procedural schemas for the organization of ordinary situations, used 

to guide actions and strategic choices within a given context (D’Amore, 1999). 

Conceptual blending operations are characterized by an interaction between 

two or more mental spaces:  

In its most basic form, a conceptual integration network consists of four 

connected mental spaces: two partially corresponding input spaces, a generic 

space consisting of structures common to the inputs, and a blended space. 

(Facounnier & Turner, 2002, p. 4) 

The basic structure of a conceptual blend is represented in Figure 1.  
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Figure 1  

The basic structure of conceptual blending 

 

 

 

The generic space allows homologies and correspondences to emerge between 

the two mental spaces, making their comparison and/or integration possible. In 

the blended space, on the other hand, the elements of the two input spaces are 

projected to bring forth an emergent novel space, with its own set of rules, 

elements, relations and structures:  

Projection allows the emergent structure to develop on the basis of composition 

(blending can compose elements from the input spaces to provide relationships that 

do not exist in the separate inputs), pattern completion (based on background 

patterns that are brought into the blend unconsciously), and elaboration (treating the 

blend as a simulation and ‘performing’ it imaginatively). (Facounnier & Turner, 

2002, p. 4)  

The blending process between two input spaces can occur in various ways, 

categorized into different types of “blending networks” (Facounnier & Turner, 

2002, p. 6): simplex networks, single-scope and double-scope networks. In the 

following we characterize these blending networks. 

In simplexes networks, input space 1 consists of a frame, which is a 

conventional, schematic organization of knowledge, and input space 2 consists 

only of specific elements that are assimilated within inputs space 1. By 

assimilation, we mean the process that allows the acquisition of new data using 

pre-existing mental frameworks or structures. In simplex networks,  new external 

data from input space 2 are interpreted within the constituent rules of input space 

1 and are thus integrated in it. 

In double-scope and single-scope networks, both input space 1 and input 

space 2 consist of a frame. In double-scope networks, input space 1 and input 

space 2 are brought together, and they both contribute to the final organizational 
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frame of the blended space. In single-scope networks, instead, the blended space 

inherits only the organizational frame of one of the two input spaces. 

In section 4.1 we provide examples and a more detailed exploration of the 

blending networks simplex, single-scope, and double-scope. Our purpose is to 

utilize them to explain the cognitive functioning of creative processes involved 

in mathematical learning. 

 

 

4. The Cognitive Creative Model and task design requirements 

In this section, in response to the first research sub-question, we present a model 

to explain the creative functioning of creative processes. 

The development of the model occurs in two phases. Firstly, in Section 4.1., 

we delve into the characteristics of originality and flexibility commonly 

associated with creative thinking. We define three distinct types of creative 

processes, each embodying originality and/or flexibility in varied ways. To relate 

these broad categories to mathematics education specifically, we link them with 

the ‘mini-c’ instances highlighted by Pitta-Pantazzi and colleagues (2022). 

Secondly, in Section 4.2., we advance to the explanatory phase, applying 

conceptual blending theory to clarify the cognitive functioning of the creative 

process categories established in 4.1. 

 

4.1. The categories of creative processes  

In this section we discuss the categorization of creative processes in the context 

of mathematics education, emphasizing the role of originality and flexibility as 

key characteristics of such processes. 

We first use the characteristic of originality to distinguish between creative 

and non-creative processes. Subsequently, we introduce three different categories 

of creative processes, in which the property of originality, which they all share, 

relates differently to that of flexibility. 

Originality is essential for a process to be considered creative. It involves 

elements of discovery and introduces new ideas, as opposed to reproductive 

thinking, which is about recalling or repeating existing knowledge (Lithner, 

2008). For example, in mathematics education, solving problems requiring new 

strategies is seen as creative, while merely reproducing known procedures is not 

(Asenova et al., 2022; Zan, 1998). 

In this sense, in our model the characteristic of originality is considered as a 

feature of each of the different types of creative processes. 

The property of flexibility, on the other hand, is optional. Flexibility, when 

combined with originality, allows for the differentiation of three types of creative 
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processes that we indicate as C1, C2, C3 (Figure 2). 

 

Figure 2  

The first step of the model: different categories of creative processes 

 

 
 

C1 does not involve flexibility; C2 and C3 both connect originality to flexibility 

but involve flexibility in two different ways from a cognitive perspective. In the 

following we expose the three categories of creative processes, C1, C2 and C3, 

illustrating them by examples taken from the study of Pitta-Pantazzi et al. (2022) 

on mini-c instances in mathematics education.  

1) The first category C1 involves original thinking without flexibility. It is about 

logically combining known elements to discover new solutions or reasoning 

methods, maintaining their original properties. In mathematics education, 

instances of “involving insights of mathematical concepts” (Pitta-Pantazzi et 

al., 2022, p. 57), can fall into this category. In the specific example cited in 

the article, sixth-grade students encounter the concept of arithmetic mean 

through a realistic scenario in which various critics provide numerical scores 

for films. When faced with the problem of judging and comparing films based 
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on these numerical ratings, some students exhibited examples of processes 

akin to C1, reasoning as follows: if numbers quantify ratings, then it is 

reasonable to assume that sets of these numbers can be compared with each 

other to generate broader and more comprehensive evaluations. In this way, 

just by logically extending the premises of the initial situation, students 

creatively “exhibited understanding of the mean concept as a number that is 

representative of a set of numbers” (Pitta-Pantazzi et al., 2022, p. 57), which 

they had never met before.  

2) The second category C2 of creative processes integrates the property of 

originality with that of flexibility. In these cases, flexibility means that what 

is already known is not simply developed in continuity with its ordinary 

premises but is rethought from a new perspective.  

a. Originality emerges through operations of comparison, connection, and 

combination between elements that are generally not related and which, 

as a result, are reconfigured in their fundamental features. Several cases 

of mini-c that have emerged from research in mathematics education fall 

into this typology. Picking up on the previous example, students tackled 

the problem of film reviews not only by reasoning from the simple 

comparison of numerical grades but also by answering questions and 

using digital tools centered on the analogy between the calculation of the 

arithmetic mean and the visual operations of balancing weights on a 

seesaw. This is an example of mathematical insight in which flexible 

thinking supports creative reasoning. The discovery of a new function for 

numbers is developed around an analogical correspondence between 

usually distant and unrelated domains of experience, such as rating 

movies and balancing weights on a seesaw. In this case, moreover, the 

analogy is not only functional to an initial intuition of the concept of 

arithmetic mean but also supports a subsequent “Precision phase” (Pitta-

Pantazzi et al., p. 54) in which students propose arguments and invent 

calculation strategies by developing the logical consequences of the 

analogy. The example is significant in clarifying how this type of creative 

process relates to another instance of mini-c relevant to mathematics 

teaching and learning, called “creation, manipulation, and connection of 

representations” (Pitta-Pantazzi et al., 2022, p. 60).  

b. Flexibility of the creative process C2 is expressed in the ability to identify 

innovative forms of knowledge representation and to work on semiotic 

transformations - treatments within the same semiotic register and 

conversions between two different semiotic registers (Duval, 1995; 

2011/2017) – that are usually kept distinct and unconnected. In the 
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specific case examined here, against the backdrop of the heuristic analogy 

with balancing, the reasoning and calculations developed by the students 

are not confined to a single register but integrate different forms of 

representation: “These instances emerged as students were (i) exploring 

the different representations of the applet; (ii) switching between the 

pictorial digital balance representation and its verbal interpretation; (iii) 

recreating the balance model on their worksheets; and (iv) using the 

pictorial representation on their worksheets as a tool to find the mean” 

(Pitta-Pantazzi et al., 2022, p. 60). 

3) The third category C3 of creative processes is characterized by a different 

meaning of flexibility as the one used above. Flexibility is here intended as 

the ability to suspend and deconstruct established thinking structures to open 

up new creative possibilities. These creative processes are often linearly 

linked to the other two categories because they provide a premise or are 

recursively activated on already elaborated creative solutions to find 

alternatives. In mathematics education, the mini-c instance classified as 

“flexible thinking” (Pitta-Pantazzi et al., 2022, p. 62) best exemplifies this 

third category. The students in the study under consideration showed 

cognitive flexibility not only in the creative solutions with which they 

interpreted and represented the scores and their balancing but also in their 

ability to alternate and integrate different calculation strategies. Their 

strategies were based on the visual seesaw model and on the classical 

algorithm introduced to them by the teacher, without either of the two 

constituting a rigid constraint that prevented them from considering and 

valuing the other. Moreover, even within the same semiotic register and the 

same model or procedure, this type of cognitive flexibility emerged when 

students proposed different sets of numbers for the same mean and different 

strategies for identifying them (Pitta-Pantazzi et al., 2022). 

So far, we introduced a classification in which the psychometric properties of 

originality and flexibility were reinterpreted as indicators to distinguish different 

kinds of cognitive functioning of creative processes and were explicitly linked to 

the mini-c instances identified in mathematics education. These different kinds 

of cognitive functioning of creative processes can now be characterized in 

reference to conceptual aspects. This will allow us to differentiate the cognitive 

mechanisms underlying different types of creative processes through 

operationalizable concept-building strategies from which general criteria for task 

design in education can be deduced. 
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4.2. The characterization of the categories of creative processes through 
the theory of conceptual blending 

In this section, we delve deeper into the cognitive functioning of creativity.  

Creative processes engage in conceptual blending strategies, while non-creative 

processes do not. We refer to different conceptual blending strategies to explain 

the distinct cognitive functioning within the three categories C1, C2, and C3 

introduced in Section 4.1  

Mental processes that do not involve creative thinking open a single mental 

space with unchanged rules and structures (Figure 3). They simply rely on 

cognitive organization already available in memory, effective for guiding 

interpretation and action. New data are assimilated preserving the frame of the 

mental space without changing the type of elements and their relations. In 

mathematics education, this is akin to exercises that reproduce formal 

mathematical knowledge without challenging or enriching established concepts 

and thinking strategies.  

 
Figure 3  

Representation of the cognitive functioning of a mental process that does not involve 

creative thinking: A single mental space is opened whose rules are reproduced and 

structures are preserved without substantial alteration 

 

Creative processes, categorized as C1, C2, and C3, involve conceptual blending. 

Here, we refer to the three types of blending networks, simplex, single-scope, and 

double-scope, described in section 3.2., to frame these categories and explain 

their different cognitive functioning. In all these forms of conceptual blending, 

two mental spaces are involved as input spaces. In each of these forms, however, 

the relations between the two input spaces vary, and these distinctions can 

elucidate the differences between C1, C2, and C3 on a cognitive level, allowing 

also a distinction of two sub-cases for C2-creative processes.  

Simplex networks explain the cognitive functioning of the first category of 

creative processes C1, in which originality is not accompanied by flexibility. In 

this case, the blending process involves the assimilation of new elements from 

input space 2 within the framework of input space 1 (see Figure 4).  
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Figure 4  

Representation of the cognitive functioning of the C1-creative processes, in which 

originality is not accompanied by flexibility, based on the simplex network: the new 

external data are interpreted from the constituent rules of the initial mental space and 

are thus integrated within it 

 

 
 

The resulting blending space is original compared to input space 1 because it 

introduces new elements and new relationships. However, it retains its original 

frame intact, which is not reconfigured but rather enriched and elaborated upon. 

The generic space represents a scheme that allows to assimilate elements from 

input space 2 into input space 1 without involving blending. 

Carrying on the example discussed in section 4.1., input space 1 is rooted in 

the script that guides the critical evaluation of films. Within this space, numerical 

elements are employed to quantify judgments, serving as the foundation for 

numerical comparisons and relationships. When tasked with commenting on 

reviewers’ individual judgments using provided scores, one simply engages in an 

exercise that does not enhance the structure of the mental space or challenge 

creative thinking. However, integrating different scores for the same film or 

comparing films with multiple scores introduces a second input space with 

unedited elements. While adhering to the basic rules of input space 1, this new 

input encourages the creative exploration of hypotheses and conceptual insights 

regarding numerical roles. Consequently, it allows for the introduction of new 

elements and relationships, such as numbers representing not only individual 

rankings but also averages.  

Double scope networks and single scope networks explain the cognitive 
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functioning of the second category of creative processes C2, allowing to 

distinguish two sub-categories of such processes. In both these cases, we start 

with two independent and unrelated input spaces, each providing a frame. The 

blending process that follows generates a new space that is not simply the 

enrichment of space 1 or 2 but is rather based on a profound qualitative 

transformation of the starting mental spaces.  

In the case of the double-scope networks, input spaces 1 and 2 are brought 

together via analogical correspondences (i.e., recognition of similarities) between 

their elements, relations, and structures (see Figure 5). 

 
Figure 5  

Representation of the cognitive functioning of the first sub-category of C2- creative 

processes, in which originality is accompanied by flexibility, based on the double-

scope network: two or more mental spaces that include unrelated elements, relations, 

and structures are brought together 

 

 
 

In this case the generic space represents a scheme that allows to compare 

elements, relations, and structures from the two input spaces. 

Returning to the example of the arithmetic mean, tasks involving the visual 

seesaw model require more than just incorporating new data into the original 

script. They demand a creative and flexible effort to reinterpret it in the context 

of a new correlation with a distinct mental space related to balancing games on a 

seesaw. As a result of this divergent input, numbers are not seen only as rankings, 

but also as ‘weights,’ or ‘balance’, and new ways to connect and represent them 

are created, linked, and manipulated. 
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In the case of single-scope networks, instead, recognize elements, relations, and 

structures typical of one mental space as suitable for organizing other spaces. 

This leads to reinterpreting heterogeneous mental spaces under a common set of 

rules (homology detection), supporting cognitive flexibility to generalize (see 

Figure 6).  

 
Figure 6  

Representation of the cognitive functioning of the second sub-category of C2-creative 

processes, in which originality is accompanied by flexibility, based on the single-scope 

network: the elements, relations, and structures considered exclusive or typical of a 

mental space are recognized as suitable and functional for organizing other mental 

spaces as well 

 

 
 

In this case the generic space represents a scheme that allows to abstract analogies 

between input space 2 and input space 1. 

In the context of the example we are using to exemplify the cognitive 

functioning of the creative processes, this type of C2 process emerges, for 

example, when students start conversations or engage in problem-solving and 

problem-posing activities, in which the new conceptual insights into how 

numbers are used and represented are transferred to the evaluation of different 

films or even to completely different contexts that do not concern the critical 

evaluation of films in any way. 

Simplex networks explain the cognitive functioning of C3-creative processes, 

but in a different way than they do in C1-creative processes. Indeed, the C3 
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category involves flexibility enabling individuals to break free from established 

forms of reasoning. This can be understood through a unique application of the 

simplex network. As introduced above, in this network, input space 1 consists of 

a frame, while input space 2 consists only of specific elements. Unlike C1, 

however, in this case blending with elements from space 2 does not enrich the 

frame of space 1; instead, it deconstructs it, allowing for the creation of entirely 

new solutions. (see Figure 7). 
 

Figure 7  

Representation of the cognitive functioning of the C3-creative processes, in which 

originality is accompanied by flexibility, based on simplex network: blending with a two-

stage movement - a starting mental space is partially or totally deconstructed - the new 

input space is restructured by blending with other mental spaces - according to one of 

the other three types of networks 

 

 
 

In our example, during the learning process, students engage in various C1 and 

C2 processes that enrich/restructure/expand the initial script regarding the 

numerical evaluation of films, with the creative discovery of the concept of 

mathematical mean and various strategies to calculate and represent it. However, 

they are not bound to mechanically follow the new rules of this mental space, 

even when they have creatively constructed them. In fact, especially when 

confronted with new disruptive and thought-provoking elements, they can 

suspend and/or alter the rules of this space to discover alternative ways to engage 

with ratings and averages. 



      La matematica e la sua didattica • Anno 32, n. 1, 2024, 71-99 

 

 

90 

Figure 8 offers a synthesis of the second step of the model, represented by the 

categorization of creative and not-creative processes, based on the conceptual 

blending networks. It shows how these networks explain the cognitive 

functioning of C1-,C2- and C3-processes. 

 

Figure 8  
The second step of the model: categorization of creative and non-creative processes 

through conceptual blending 

 

 
 

 

5. General task design requirements 

In this section we delineate general task design requirements to foster creativity 

in mathematics learning, building upon the model presented in Section 4. More 

specifically, in continuity with the categories of creative processes introduced 

above, four general types of task design requirements can be distinguished. In the 
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following we characterize and discuss these four task design requirements. 

The first basic requirement of task design states the importance of a 

mathematically significant problem defined in a context that is familiar for the 

student and defines a shared metal space. Suitable contexts for this 

mathematically-significant-problematic-space-requirement could be everyday 

experiences, narrative sources, or existing mathematical knowledge familiar to 

them. However, to ensure didactic significance in subsequent blending phases, 

the function and meaning of mathematical elements within this shared mental 

space must be clear and relatable. To establish this initial clarity, an extended 

phase of observation and dialogue with students could be necessary. A key 

requirement for generating this educational scenario, as emphasized in literature 

(Leikin & Sriraman, 2022), is presenting students with questions or problems of 

an appropriate degree of openness: not too open to lose relevance to the starting 

situation, yet not too closed to restrict creative thought. Therefore, accounting for 

the characteristics of the class and fostering a shared and open thinking space are 

vital for authentic and meaningful engagement with creativity in learning.  

The second requirement focuses on the first category of creative processes, 

C1, and allows us to work on the creative insight of mathematical concepts with 

an incremental-approach-requirement that does not require flexible thinking. To 

enhance such creative processes, rooted in the simplex network of conceptual 

blending, it is crucial to introduce a new input space whose elements can 

mathematically enrich the initial situation. For instance, data can be presented, or 

thought-provoking questions can be posed, to introduce a new mathematical 

functionality that can be built from the initial elements and within the rules of the 

starting context. The conditions for this to happen depend on the teacher’s ability 

to rethink the mathematical learning goals in the light of the starting situation and 

to propose them in a language consistent with the rules and structures of this 

shared mental space (e.g., in reference to the example used before, this could 

happen byframing the discovery of arithmetic mean as a problem of movies 

comparison). While this requirement ensures originality in thought processes, it 

does not explicitly prioritize flexibility. It is possible for students to 

spontaneously engage in more complex and flexible blending processes, but the 

primary focus of this requirement is not systematically fostering this aspect of 

creativity. 

The third requirement affirms that tasks must require connection with 

elements that do not fit into the starting situation and allow students to discover 

and develop the divergent association independently. The main goal in this case 

is to work with tasks that transcend the rules of the initial situation through the 

association between different mental spaces. This divergence-requirement is 

related to the second category of creative processes, C2, and can be used to work 
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with the type of cognitive flexibility based on double-scope blending or single-

scope blending.  

In the case of double-scope blending, task design must start from a divergent 

and mathematically significant interpretation of the elements encountered in the 

starting situation (e.g., average=balance). This premise can originate as much 

from the teacher’s planning as from creative ideas that spontaneously emerge 

from students. It can be as much an incentive to develop analogical 

correspondences between different concepts or modes of representation (e.g., 

numerical calculation of the mean/verbal explanations/linear distances on the 

seesaw), as well as the request to manage eccentric and divergent associations 

(e.g., film scores - weights to balance).  

In the case of generalization through single-scope blending, instead, task 

design must stimulate new associations that allow for the identification of 

alternative contexts in which to apply what has been previously discovered (e.g., 

where else can we use the seesaw model to solve problems with arithmetical 

means?). 

The fourth requirement is focused on the kind of flexible thinking related to 

simplex blending, which belongs to the third category of creative processes, C3. 

What is needed in this case, are creative disturbance tasks, which allow to 

deconstruct the starting situation that needs to be reconfigured creatively. We 

thus refer here to a creative-disturbance-requirement. Teachers can move from 

the simple request for alternative solutions (e.g., can we use the seesaw to find 

different calculation strategies?) to targeted intervention on specific elements of 

the initial mental space by imposing additions, elisions, or substantial 

modifications on properties and structures (e.g., how to communicate the average 

scores without writing? How can we use as few numbers as possible?). 

In summary, the mathematically-significant-problematic-space-requirement 

applies to all three categories of creative processes and allows us to establish the 

basic conditions for working on originality and generating conceptual blending 

processes. The other three requirements, instead, allow us to work on additional 

conditions to focus on the different categories of creative processes distinguished 

above: the incremental-approach-requirement allows us to focus on category C1, 

by working with simplex blending and without guaranteeing cognitive flexibility; 

the divergence-requirement focuses on category, C2, by working on cognitive 

flexibility with double-scope and single-scope blending; the creative-

disturbance-requirement concerns the third category, C3, and focuses on simplex 

blending to work on the flexible deconstruction and reconstruction of acquired 

strategies and ways of reasoning. Figure 9 provides an overview of the four 

general requirements for task design, in connection to C1, C2, C3 and the 

corresponding conceptual blending networks. 
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Figure 9  

Four general requirements for task design derived from the model 

 

 
 

 

6. Discussion  

As a result of what has been stated so far, the model presented in section 4 

provides a complete answer to the first of the two research sub-questions 

addressed in this study: Which are the characteristics of a theoretical model able 

to provide a synthetic and comprehensive explanation of the cognitive 

functioning of creative processes? 

We can answer this research question by first recalling the model’s components 

and the relations between them, and then by explaining why the model is 

supposed to provide a synthetic and comprehensive explanation of the cognitive 

functioning of creative processes. 

The theoretical model presented in section 4 is based on the definition of three 

distinct types of creative processes, each embodying the characteristics of 

originality and/or flexibility in varied ways. In it, the cognitive functioning of the 

creative process categories defined above is clarified by the conceptual blending 

networks taken from the theory of conceptual blending. 

The model can be considered as providing a synthetic and comprehensive 
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explanation of the cognitive functioning of creative processes at least for three 

reasons. 

Firstly, the model does not merely provide point-by-point descriptions of 

specific creative performances but provides a general classification of creative 

processes based on an explanation of their cognitive functioning. Consequently, 

in addition to empirically observing how creative thinking supports meaningful 

learning, with this model it is also possible to clarify how this is possible on a 

cognitive level. 

Secondly, the model has a unified and comprehensive nature. The different 

types of conceptual blending networks explain how creative processes work, 

without depending on the punctual analysis of specific examples. Indeed, the 

model aims to explain all possible implementations of mini-c instances in 

mathematics education and, possibly, to become a framework for further 

descriptive research aimed to detect mini-c instances that have not yet been 

considered. 

Finally, the explanatory potential of the model is not limited to the 

psychological level but has clear educational implications. The theoretical 

language of conceptual blending is based on concept-building strategies that can 

be readily operationalized, starting from elements, relations, and structures of 

mental spaces, up to the dynamics of combination, correlation, and 

reconfiguration of different input spaces within integration networks. In this 

sense, the model allows us to explain which tasks are suitable for stimulating 

creative processes that support mathematical learning. 

This last point leads us to the answer to the second research sub-question: Which 

task-design requirements can be deduced from this model in order to stimulate 

and foster creativity in mathematical learning? 

Starting from the classification and explanation of mini-c processes at the 

cognitive level in the previous section, we have not only confirmed the 

importance of open tasks, already recognized in the literature (mathematically-

significant-problematic-space-requirement), but we have also introduced other 

three general design requirements to structure these tasks in a way that stimulates 

and develops different types of creative processes: the incremental-approach-

requirement, needed for creative processes where no flexibility is required; the 

divergence-requirement, needed to work on flexibility in the sense of divergent 

associations, analogical correspondences and generalization; the creative-

disturbance-requirement, needed to enhance flexible creative processes where 

fixed mental patterns are deconstructed and reshaped. 

In order to answer the main research question: Which are general 

requirements of task design for tasks able to stimulate and foster creativity in 

learning mathematics?, we should now explain in what sense the above 
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mentioned task design requirements can be considered as general, but also 

specific to mathematics education. 

The task design requirements listed above can be considered as general 

requirements because they are independent of the specificity of the mathematical 

content involved in the tasks. Furthermore, they cover a wide range of possible 

creative cognitive behaviors that are described and characterized by basic 

cognitive tools, recognized in the literature as conceptual building strategies on 

which human thinking processes are founded. But, at the same time, these 

requirements are suitable for mathematics education, as we have shown with the 

paradigmatic example of mini-c instances, such as the creative development of 

conceptual insights, the manipulation and connection of representations, and the 

exercise of flexible thinking, taken from research in mathematics education 

(Pitta-Pantazzi, et al., 2022) and specific to this domain of knowledge. 

 

 

7. Conclusions 

Our purpose in this paper was to investigate the possibility to work out general 

task design requirements able to support researchers and teachers in producing 

suitable tasks able to stimulate and possibly develop the emergence of creative 

behavior within ‘every day’ classroom settings. To do this, we needed a 

theoretical model able to explain how the characteristics we included in our 

definition of creativity (originality and flexibility) can be linked to the cognitive 

strategies of conceptual blending, considered as the basic cognitive tools in 

human thinking (the conceptual networks single-scope, simplex, double-scope). 

This allowed us to ‘open’ what we called the ‘black box’ of the creativity tasks 

that seem to transform non-creative students into creative ones. Indeed, we were 

able to explain which are the cognitive processes that presumably make such 

tasks work, but also to which extent creative processes differ from non-creative 

ones. However, our investigation took a step further in operationalizing these 

requirements. This was accomplished by the instantiation of the characterized 

cognitive strategies of creative thinking by the mini-c instances known from 

literature in mathematics education research.  

Although we were able to answer our research questions positively, our 

investigation also has limits: it is purely theoretical and the model we provided 

needs to be validated by testing the effectiveness of the derived requirements in 

task design. This is certainly one of the possible future research paths. 

But looking up a little from the objectives set out in this paper, we believe to 

have also prepared the ground for future research that can take several other 

directions. Indeed, given the research problem we started with, the results 
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achieved by our investigation can be considered as relevant at different levels 

that go beyond the ones related to the research questions. 

Firstly, the requirements of task design allow for educational design in which 

mini-c processes are not only generically induced but become the object of 

explicit reflection and can be consciously linked to specific learning goals4. This 

means that further research could be carried out to provide such links, based on 

concrete examples of mathematical topics. 

Secondly, the requirements can unify the variety of existing models and 

observational studies within a synthetic classification based on a shared 

conceptual framework provided by conceptual blending. The empirical studies 

focused on open problems and multiple tasks in mathematics education fall under 

the first requirement, which sets general didactic and pedagogical conditions for 

attributing a creative character to learning processes. The other three 

requirements, which instead add more specific details for structuring tasks, allow 

us to simplify the heterogenous variety of psychological theories on task design 

(see section 2) to three essential categories. This is not only useful for generating 

tasks independently but also for ‘navigating’ the existing literature and 

identifying redundancies and synergies between different theoretical approaches. 

We believe that this could be an important topic to be developed and discussed 

within the field of the epistemology of mathematics education as a research 

domain (Asenova, 2023).  
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